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CHAPTER I

INTRODUCTION j
1.1 Multiyariate Experiments

RMany experiments involve measuring a number of response variables

simutltanc(isly. Thus, for example, in determining the effectiveness of a

new drug, a person's systolic and diastolic blood pressure may be observed,

before and after administration of the drug; also his pulse rate, tempera-

ture and other physiological data may be recorded. As a result of

giving one stimulus to an experimental unit, what we obtain is not just

one response but sQvcral responses. In statistical lanauaee. we deal with

amultivariate si.tuation (many rereponses) as opposed to univariate siLu-

r ations (o-2ly one response), An experiment is rarely so simple as des-

cribed above. Usually, many stimuli, which will be called factors, are

considered at many levels in the same experiment. Ultimately, the experi-

menter has a large collection of data before him. The problem is how ro

interpret the data. Depending upon the experimenter's objective, many

statistical techniques are available to analyse the data and to draw con-

clusions therefrom. In the preseat work, we consider one such techinique,

the identification of subgroups of individuals on the basis of responses,

i.e., & special case of cluster analysis. In the following sections, we.

review some of the problems of the subject and then outline the spccial

problem in the present dissertation.
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1.2 Yeview of Lhe related literature

Conqider an experiment where many responses are recorded on each

experimental unit. We shall assume that there are i unittn1 ý'ft. I
and, on'each unit, p responses are WWAsured. The resulting data can be

put in the form of an n x p matrix. Each row of this matrix corresponds

to one experimental unit. Each experimental unit can be represented by a

point in a p-dimensional space. It is possible tLat some of these points

will be so close to one another that they form a "cluster." The problem

of detecting clusters has been considered by many authors during the last

30 years. Tryon [371 in 1939 gave many algorithms based on the correla-

tion matrix of variables, for the -related problem of assigning variables to

groups. The technique, much similar to the concept of the "coefficient of

belonging" described by Harman [141, was developed on the assumption that

correlations among variables belot;.ing to the same group should be much

higher than correlations between these variables and those not belonging

to the group. Holzinger and Harman [15] defined their coefficient of

belonging or B-coefficient as "100 times the ratio of the average of the

intercorrelations among the variables of a group to their average corre-

lation with all the remaining variables.

Sokal and Michener proposed the weighted mean-pair method to I
identify clusters. This method was originally applied to an entomological

problem [33). A more recent description of this method has been given by

Sokal and Sneath (34] who recommend it as "the best of a class of commonly

used methods of cluster analysis." The method operates on an N x N

sfi.mLarity matrix. Those two individuals, i and j say, which have the

highest similarity are paired together, i.e., put in the same cluster.



3
Any appropriate measure of similarity e.g., product moment correlation

coefficient, coefficient of association, etc., can be used, although by

iar the mosr communly ub,4 Loucai-__ct. _,,, ..... .-

efficient. After the individuals i and j have been paired together,

columns (and. rows) i and j of the similarity matrix are replaced by a

single column consisting of the means of the elements in rows (and columns)

i and J. The process is then repeated on the new matrix of order (N-l),

when either two new individuals have the highest similarity and form a

new pair, or the existing pair combines with a further individual to make

a cluster of three. The process continues and at each stage a new

"cluster consisting of a pair of individuals is formed or the new indi-

vidual is assigned to one of the already existing clusters of previously

combined Individuals.

Edwards and Cavalli-Sforza [7] suggest dividing the points into

two sets such that the sum of bquaes of distances between sets is a maxi-

mum. Thus according to this method, one can find only two clusters, no

more and no less. Since the total sum of squares is a constant for a

given sample, maximizing between-groups sum of squares is equivalent to

minimizing the within-groups sum of squares. The method consists of

examining all the 2Nl - 1 two-set partitions of N individuals and

selecting the one which gives- the minimum within-set sum of squares. The

method is not suitable for a large value of N as the time required on a

computer to examine all the two-set partitio.s is enormous. It 4as esti-

mated that with N - 21, the time required to examine all the partitions,

on a computer with 5 micro-second access. time would be 100 hours and that

for N - 41, it would be 54,000 years. Thus even with the help of. the

fastest computers, the method would be impracticable. One more algortthlm
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based on ecological applications was proposed by Williams and Lambert

136J. Gower 112J gives an exceiient comparison oi the iast three men-

tioned algorithms together with nomm of him own modifications proposed

for these algotithms. I
Another important study was made by Neyman and Scott [27]. They

extensively studied the clustering of galaxies in the universe and pre-

sented the theories of "simple clustering" and "multiple clustering."

"Simple clustering" was based on the assumption that galaxies occur in

clusters and that the cluster centers are uniformly distributed through-

out the universe. In "multiple clustering" it was assumed that the

cluster centers radiate from super clusters. *1

Frow the above discussion, it is clear that in the statistical

literature, we come across two types of clusters--(i) the clusters of

variables and (ii) the clusters of individuals or points or exoerliental

units. Without going into the details of t6 confusion that these two

concepts have created and their uses and misuses, we only note that given i
a multivariate spmple, it is possible to identify the underlying clusters

by applying any of the suitable techniques available.

We now describe in detail an algorithm proposed by Bargmann and

Graney [5] to determine clusters with the object of identifying mixed

samples of multivariate normal distributions. With the help of methods

to be developed in the present work, we may then study the configuration

of such subgroups.

1.3 Real and Virtual Clusters

Real clusters are defined to be clusters of points in the original

space. "Vitual clusters on the other hand are clusters of projectiona of

V1
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points in a space of dimension lower than that of the original space. To

'W• u an exampie irom uraney jJUJ, if one were to look for clusters of

1- stars as observed from the earth, one would be dceling with virtual

clustering. The observer perceives the stars as projections onto the

surface of the celestial sphere. To determine the real clusters of stars,

it would be necessary to measure the distance of each star from the ob-

server. It is also obvious from the above example that, virtual clusters

may not necessarily be real clusters, and vice versa. One may tend to

think that real clusters would necessarily be virtual clusters also. This,

however, is not so. If one were standing in the midst of a real cluster,

he may not find any cluster at all. In this connection, it should also

be noted that in the algorithm proposed by Craney [10], if a cluster is

centered at the center of the entire system, it would not be detected.

.This is similar to identification of galaxies. Being a member of our o;n

galaxy, we do not obtain, by direct observation, a description of the con-

' fLguration of our galaxy. For that purpose, we will have to mahe calcu-

lations based upon distance measurements (or observe from a different

galaxy).

1.4 d-clusters and k-clusters

As experiemental units are assigned to clusters, a decision has
to be made whether two units are close enough to justify their inclusion

in the same cluster. One may look at this problem in two directions: The

so-called d-clusters and k-clusters. Consider a region S of fixed radius

d. This is said to be overdetermined at the a-level of significance if

the number of points in the region exceeds a value k such that, under0

the null hypothesis of uniform distribution of points,



6

P [k0 or more points in S) < a

This type of cluster is known as d-cluster since it results from a region

of fixed radius d. 21
The other type of clustering results when a fixed number of points

fall into a region with sufficiently small radius.' Let there be a fixed 2

number of points, say, k. Let d be the radius of a sphere (or hyper-
0

sphere) just sufficient to enclose all these k points within the sphere.

It is apparent that d, the radius of the sphere is a random variable. If

P [d < d 3 a
0

where a is the predetermined level of significance, then these k points

are said to form an overdetermined cluster. Such a cluster is known as

the k-cluster since it results from a fixed number of points falling with-

in a sufficiently small sphere.

1.5 Identificntion of Mixed Samples

Consider the case of k-cluster discussed above. As an exanple of

this type of cluster, consider an experiment in which the number of people

given a drug from a certain class of drugs (which produce similar effects)

is limited. Then one would like to know if the symptoms among some indi-

viduals are more closely alike than those of other.individuals. In other

words, it would be appropriate to see if there are some individuals vhose

symptoms are so close that they form a cluster. But this also implies that

we are looking for a principle of classification which distinguishes this

group of individuals. Such a situation can arise in linear analysis. For

the sake of simplicity, we shall describe the situation in terms of uni-

variate analysis, but it applies equally well to multivariate analysis.

In a two-factor oxporimcat one being applied at r levels and the other being
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applied at a levels, we will have r x s cells; let us assume that there

are nlj observations in cell ýi, J). Analysis of these data on the basis

of a linear statistical model assumes homogeneity of cell variances. The

Shypothesai of the equality of cell variances can be tested by application

of Bartlett's test. If this hypothesis should be rejected, three. possible
IF 

2
causes can be responsible: (i) The cell variances are not constant, a

but proportional to some known vii (a different one for every cell). A

variance-stabilization transformation, or weighted regression, or both,

can be employed to correct.tbis situation. (ii) There may bd "mavericks"

-- misclassified or improperly recorded items. They can be omitted before

the analysis of the data. (iii) There may be a third factor of classi-

fication present. If this is the case, what we regard as "error sum of

squares" is in fact not the error sum of squares but the variance compo-

nent sum of squares error, plus sum of squares due to the third factor

which we have not taken into account. In multivariate analysis of variance,

this quantity would be the (H + E) matrix instead of the E matrix alone

where E stands for the "error" SSP matrix and H stands for the "hypothesis"

SSP matrix. I Hence the problem reduces to that of detecting the third

hidden factor. It is clear that the sample within each cell comes from

two or more populations instead of from just one. It will be necessary to

"unlroix" the samples within each cell before a valid linear statistical

Sanalysis of the data can be performed. Instead of describing the technique

of unmixing the mixed samples, we refer to Graney [10], for a full des-

cription of the technique, which also contains a number of illustrations.

*SSP sum of squares and products, sometimes also called "'11ihart"
alatrix.



.4There has been, in recent years, a considerable resurgence of

interest in cluster analysis. Ling [23] has discussed many techniques

* and he has tried to classify these. It is apparent that there is little

purpose in inventing yet new similarity indices, distance measures, or

search algorithms. The present dissertation deals with a point inter- I

mediate to the two problems which cluster analysis has attempted: (a)

classification of individuals, on the basis of responses and (b) classi-

fication of response variables assuming a homogeneous group of individuals

(really factor analysis). Cattell (6], and Stephenson (35] view the entire

complex as "factor analysis" and call the first problem the "Q technique,"

the second problem the "R technique," and the combined problem, the "P

technique." Unfortunately, their techniques do not lend themselves-to a

study of configurations because in their attempt to regard every problem

as a correlational one, the authors perform analyses which become self-

contradictory. For example, sums of squares and products can be used as

terms in estimates of correlation between variables only if the individuals

are independent, and conversely, "correlations" between individuals can be

estimated by a product-moment approach only if the variables are uncorre-

lated. Quadratic forms would be needed otherwise, and the sums of squares

and products can be quite meaningless. The present study avoids this

confusion by separating, at each stage, the clustering problem (cluster

of individuals) from the problem of structures of variables within

clusters.

Guttman [11] has proposed a yet another technique to reduce the

dimensionality of data. The technique. "nonmetric" in nature, works on an

n x n symmetric matrix R, and determines those transformations wkich yield
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an Euclidean coordinate system X (X : n x m), such that XX' F for m

a minimum and, furthermore, satisfy all inequalities that whenever
1 ki L ien for the non-diagonal elements of R and F,

(i iJ, k 0 1). This avoids the problem of communalities and "when some

lawful structure or pattern is present in the data, e.g., a simplex, a

eircumplex, or a radex, a nonmetric analysis will reveal the configuration,

whereas a metric approach will obscure the lawfulness." For detailed dis-

cussion of this approach and the algorithms developed in this connection,
refer to Guttman [11] and Lingoes and Guttman [24]. It is clear that this

technique will reduce the dimensionality of all the data points. Again,

as in factor analysis, it will not be affected by mean shifts. It is thus

an.alternative tn structural and factor analyses and not an "in-between"

solution as proposed by us in section 1.6.

1.6 Definition of the Problem:

In the above sections, we have given a brief outline of traditional

approaches to cluster analysis. The discussion reveals that, given a

multivariate sampl, it is always possible to detect some underlying

cluster structure and to assign points (experimental units) to the clusters

to which they belong. This is not the ouly kind of analysis that can be

performed, The same data could also be subjected to factor analysis,

which assigns response variables to classes. Cluster analysis will group

the individuals bringing out the mean effects and leaving the variable

structure unaltered. Factor analysis will describe the data in terms of

artificial variables without telling anything about the group means in-

.* volved. What we propose to do in the present work lies in-between these

two extremes. We first perform cluster analysis on p responses for

K



10

each unit, and sorL h •pcri•entý! ,,ita into groups. After assigning

axparimentas units into groups, we look for those Individuals whose total

response could be expressed in (p-i) combinations of original responses,

irrespective of the groups or clusters to which they belong. Thus the

ultimate purpose of our analysis is to elicit more information from a set

of multivariate data than is possible by cluster or factor analysis alone.

Frequently both of these extremes produce trivial results. In medical j
applications, cluster analysis tends to producing clusters of patients who

are healthy, slightly ill, and very ill. By contrast, factor analysis

identifies a collective set of symptoms such as "fever," "1pain," and 1
"chills "

The algorithm developed in the present work begins by identifying

clusters in the sense of estimating parameters of mixed multivariate

normal distributions with equal variance-covariance matrices. If this

were not done the unit ellipsoids around the grand mean would be affected,

uncontrollably, by mean shifts. Within each of these ellipsoids, we look

for well overdetermined subspaces of lower dimensionality, in the sense

that we want a very significant number of individuals to fall into a region

close to these highly overdetermined subspaces. These will be called

"Simple Structure Planes."

We use this term because of its similarity with one criterion

which Thurstone 136] used in describing a "simple structure" in the common-

factor space of factor analysis. It all principal components of the

within-cluster matrix were calculated and "rotated," the results of our

study could also be produced. This, however, would be a tremendously

wasteful procedure.



. 11

Those individuals which have a large distance from the subspace,

yet belong to the original cluster, would differ from the others in that

they require at least one additional diagnostic.

Geometrically, the Euclidean distance on a metric given by the

unit ellipsoid, is obtained as follows: A vector is passed from the center

of the ellipsoid (0) to the point in question (A). This vector intercepts

the unit ellipsoid at point (S). The Euclidean distance is then

(length OA)/(length OS). For this reason, the ellipsoid is called "unit

ellipsoid." It generalizes the concept of a "unit interval" in one dimen-

sion (hence metric). The computer output reports these distances as a

vector vo.

Now, the largest projected distance of a point, onto a 2-dimensional

subspace, from the simple structure unit ellipsoid, is at moat equal to the

actual distance in p diriensions. Hence a point showing an appreciable

distance from the simple structure ellipsoid, on any projection, would be

representative of a point requiring one variable more, for adequate des-

cription, than the points lying in the simple structure region. This

property is not related to the clustering of the points. Points in the

same simple structure subspace may be far removed from each other; they

may belong to different clusters.

The points having a large (positive or negative) distance from

each of these planes can now be scrutinized. They share some character-

istics, which makes them different from the other points on this plane.

It is to be noted here that this procedure was not intended to find sub-

clusters--one could do that Ly tightening the control constants in the
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original program--but to study subspaces of lower dimensionality. Thus

the multivariate data are viewed from a new point of reference, and one

may identify principies'permiLLIub a i ff nt. ^-

units (patients, plants, atc.).

There is a certain analogy of techniques between the aubspace

solution and the "simple structure rotation" in factor analysis. This

is expected in virtual clusters. The cosine of the angular distance be-

tween two vectors can be regarded as a correlation if the vectors repre-

sent variables. It Is in this sense that our n data points correspond

to n correlated variables of factor analysis and our variables them-

selves correspond to the factors. With this understanding we can apply

the rotational techniques to the original data matrix in order to obtain

points lying on simple structure planes.

In the present dissertation, we have synthesized these two

techniques--cluster analysis and simple structure identification--into a

single program. When the user subjects his data to this program, named

CLUSTR, he gets clusters and simple structure planes as the output. Next,

we have developed an interactive graphics program, named ELLIPSE, which

can be used to visualize the configuration of clusters and'the underlying I

simple structures. Configuration of multidimensional clusters can b i

determined only if their dimensionality is reduced. For this purpose, it

is necessary to project the clusters onto several 2 or 3 dimensional

subspaces. The emphasis in the present work is on projecting the clusters

2Those readers who assume that this is analogous to factor analysis

should be remindead that the latter increases thý. dimensionality from p corre*-
lated to p + k (at least partially) uncorrelated variables. There is- of
course, no relationnhip to an incomplete "component analysis" which produces
singular solutions.
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onto many 2-dimensional spaces and displaying them on the IBH 2250- Graphies terminal. If the plane of projection selected is orthogonal to a

IL i ,•simple structure plane,-the points lying on the particular simple structure j
plane will make a band of narrow width more or less resembling a straight

line. The display program can also bk used in an exploratory manner. The

user can supply many different vectors. If, by using some vector of pro-- jection, he sees narrow bands as described above, the corresponding vector

is orthogonal to a simple structure pla.e. Such visual determination of

simple structure planes, however, is rather difficult especially if the

I user is required to make inferences on configurations in four or -more di-

mensions, on the basis of 2-dimensional displays. It is implicit from the

above discussion that the determination of simple structure is equivalent

r to the fact that the points lying on a simple structure plane need at least

one variabls less in their description. Thus if p variables have been

measured on all the experimental units of the sample (p-l) variables are

adequate in the case of those experimental'units which lie on a simple

structure plane. In the case of thesc experimental units, one of the p

variables can then be expressed by a linear combination of the remaining

(p-l) variables. The statistical interpretation of this phenomenon is

considered in Chapter 3.

fL.



CHAPTER It

PRINCIPAL COMPONENT AND OTHER PROJECTIONS
•I

2.1 Introduction

As stated in the previous chapter; one of the goals of the present

work is to display many different projections of-multidimensional clusters.

In this chapter, we give an account of projections along eigenvectors or

principal components of the metric ellipsoids onto 2-dimensional subspaces.

The principal component projections are necessarily "orthogonal." It is

worth noting at the outset that very little information was gained by these

principal component projections. Not that we were surprised by this

finding, but some social scientista seem to attribute a lot more to this

particular mathematical reference frame than it deserves.

2.2 Principal Component Projections

Let Z - (Z : n x p) be a data matrix of the multivariate observa-

tions. The n data points can be represented in a p-dimensional space.

It is assumed that the clusters formed by these n points have been

identified as well as the points belonging to the clusters. It is further

.assumed that points, which cannot be assigned to one of these clusters,

have been eliminated. Now, if the data come from a p-variate normal distri-

bution (or a mixture of p-variate normal distributions with different mean

vectors but the same variance-covariance matrix), the clusters would be

elliptical in shape, and tile ellipsoids would have the same orientation.

If there are k clusters, and if we denote by l p2' ! " k the
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cluster centers, the equations of the ellipsoids enclosing these clusters

can be written as

( - Ed Z" (a- •i) - constant

for i - 1, 2, . . , , k, where x stands for the running coordinates. The

points belonging to a particular cluster will be enclosed withir the

respective ellipsoids. In practice, since the population (or populations)

from which the sample was drawn, will not be exactly normal, we will not

e'pect all the data points belonging to a particular cluster to lie within-

the corresponding ellipsoid. However, unless the population is far from

norm.al, the ellipsoidal fit will be quite good. To visualize how the

points are distributed in p-dimensional space and how they look in relation

to their enclosing ellipsoids, we ieed to project the points onto several

2-dimensional spaces. The technique is simple and classic and is spelled
out here for the sake of copipleteness. ,L'et us take the equation of the ith

unit ellipsoid

S_ 1-1 ( _ ) .(2.2.1)

Since E is a positive definite ( or at least positive semi-definite) matrix.'

there exists an orthogonal matrix Q such that

Q' D Q " (2,2.2)

where D is a diagonal matrix with diagonal elements equal to the character-

istic roots of Z, and Q is the matrix of the eigenvectors of E. (2.2.2)

1This generalizes the "standard unit interval" in univariate
analysis.
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j• can be wrltten aa

Z Q Dx Q' (2.2.3)

and hence

E D (2.2.4)

where D,/, is the inverse of D.. (The reciprocals of the characteristic

roots of E are the diagonal elements of D Substituting (2.2.4) into

(2.2.1), we have

(x- .)' Q Q' ( - .) - 1 (2.2.5)

or, if we let Y' ' , }i)' Qx this reduces to

£ D1/yZ 1 (2.2.6) *1
(2.2.6) is the standard principal axes reduction of the conic (2.2.1). The

L - tratuisfuoaLIuQ ' Lx ) Q is the orthogoial rotation of the original

S"reference, axes in the direction of the principal axes of the ellipsoids,

The direction cosinas of the principal axes' of all the k ellipsoids are

identical because of the assumption of equal metric (homogeneity of disper-

sion matrices). If we write the matrix Q as

where ' ." . are the elgenvectors of E, the transformation

Q. - 2,)' Q can be written as

I'i= -L )d' (11 --q-2 • •'p•

Since Q is orthogonal, z' Q will be coordinates of an original data

point z'i, which is the ith row of the data matrix Z, with reference to

the new coordinate axes. In particular z'igi1 , .1'i,2 will represent the
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orthogonal projection of the origina, data point z-i onLO LhIC 2-4L.Li 1--

sional plano determined by the eitnvectors &, ands2. Lot us assume thai

the elgenvectorm are artanged in descending order, i.e., q is the eigen-

vector corresponding to the largest root, %2 that corresponding to the

second largest root, etc. Then the 2-dimensional plane determined by _-

and 1 is the plane containing the two largest principal axes of the

ellipsoids and we would be projecting the data points onto this plane.

We can take all the (P) - p(p-1)/2 pairs of eigenvectors and project the

data points on these planes.

2.3 PrinCipal Component Displays

The IBM 2250 Graphics terminal was used to display projections on

.the'p(p-l)/ 2 2-dimensional planes formed by each pair of the eigenvectors.

•J•ne oAta usea tly Graney lPoJ were taKen, ane the tnree clusters iaentrtaee

by him were projected on all the three 2-dimensional pairs formed by the 3

variables. The unit ellipses (i.e., projecýions of the unit ellipsoid)

around the clusters were also displayed. The orientation of these

ellipses, is, in the case of principal components, of course parallel to

the axes of referen,.e. If, however, one of the axes is not a principal

component, the inclination of the principal axes of the ellipses with the

reference axes can be displayed. This inclination may present some evi-

dence regarding the nature of the data points, which was obscured in the

principal component plot. Because of the disappointing lack of informa-

tion contained in the principal component plots, we did not even bother to

document the computer probram. Instead, the program which.has been docu-

mented permits projection arouud arbitrary pairs of reference axes. These

computer programs are described in detail in Chapter V.



2.4 Other Pro'lections

-18Let the equation of the n-dimensional unit ellipsoid be

where E is the p x p variance-covariance matrix, x are the running coordi-
4nates and Y is the cluster center of the ith cluster. There will be as

many ellipsoids as the number of clusters identified. For the sake of

notational convenience, we will drop the subscript i from k. As all the

ellipsoids are referred'to the same metric E- 1 , they differ only with i

respect to their location. In the discussion thift follows, we are. con-

cerned with the shape rather than the location. The matrix E,'as a popu-

lation paramreter, is unknown and we will replace it by its unbiased esti-

mate, s, the matrix of mean squares and mean products within groups. The ,

projection on the 2-dimensional plane tormed by the variables . and J can

be written as f
: 11i -X 1A2 + sJj(x T- 0j)2 + 2 SLJ (xi - Vi)NJ - 1j)-

Swhere s'J is the (i, J)th element of s"a These equations for various

values of i and J are employed in displaying the projections. For therp.ir-

poses of computer programming, this~'equation is further simpli ii ,

8iiy2 sJ~yj2. 2s iylj Yi
iij

where x , - Y, and x- i yj. By employing the standard reduction

techniques, the coordinates to plot the ellipses can be easily calculated.

Further aspects on this phase of the computer program are treated in

Chapter V.



CLUSTERS IN SUBSPACES--THE SUIPLE STRUCTURE SUBSPACE

3.1 The Problem

The previous two chapters considered the problem of cluster

identification and cluster configuration. We now come to the second

part of our inquiry--identification of experimental units or points

which could be described by measuring a fewer number of variables on

them. Before we proceed further with the identification of the points

lying on a subspace, we want to consider the situations where such a

problem can arise. A familiar example would be one of medical diagnosis.

A number of patients are measured on a number of medical symptoms.

Sometimes these measurements are repeated on the same patients for a

number of days consecutively. Here the symptoms measured are our vari-

ables and the patients are subjects or experimental units. If the measure-

ments are taken on different days, it would add a factor of classification;

let us assume that this factor (i.e., days) has not been recorded. Of

course, from these data one can construct a variance-covariance matrix and

from that obtain a correlation matrix. This could be subjected to factor

analysis. Factor analysis would reveal groupings of the symptoms in these

data. Application of Thurstone's (36] principle of simple structure could

reveal such groupings. Disappointing examples of this kind of analysis

resulting in the symiptouis l.i1e "caill," "fever," and "pain" are not so

uncoTmon.
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The data could also be subjected to cluster analysis to form

groups of patients. In this type of analysis, the patients would be

classified into groups depending upon the absence or severity of sympto=s

they have in common with respect to other patients belonging to the same

'group. Thus, for the patients belonging to the same group, almost all

the patients would be measuring equally on the average on different

symptoms; they may either measure high on the same symptom compared to 4

other patients belonging to different groups or measure low, etc. To

summarize, factor analysis would tell us about the symptoms, and cluster

analysis would help us to group patients according to the "degree of

severity," say, of the symptoms. According to cluster analysis, we may

have two patients belonging to different groups perhaps because one

measured low on one symptom and the other measured high on the same

symptom. It may happen that the particular symptom would have left the

final diagnosis unchanged. To this extent, this symptom could be dis-

carded so far as these two individuals are concerned and then they will

belong to the same "group." But neither the factor analysis nor cluster

analysis would bring out this fact; nor would it bring out the fact that

"days" is a hidden factor. We must extend both techniques before we can

identify such configurations. The problem is formulated in mathematical

terms in the next section where we present, in detail, a specific

approach.

3.2 Mnthematical Formulation

In previous chapters we have dealt with the techniques of cluster

analysis. It was pointed out that given an n x p data matrix, it is

possible to identify the underlying clusters. We now ask the tiext
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questlon--are there any data points which instead of lying in the p-

.. " -r-v-," ... l t- p-i) uimensionai hyperplane? This I
question is Important as an answer to it, among other things, will rcveal

the following things: (1) The points that lie on the (p-l)-dimensional

hyperplane. The determination of the points lying on the (p-l)-dimen-

sional hyperplane will help us to describe these points in terms of (p-l)

variables instead of p variables. (ii) We will essentially devise a

"discrimLnant function" which helps us to split the original sample into

two groups of points--one group which needs all the p original variables

to describe the points belonging to it and another group which needs (p-1)

instead of p variables to describe the points belonging to it. In the

second case, we have also to consider the qdestion of which variable to
discard from the original 1p variables. Note that it is also implied in

the second case that the p x p variance-covariance matrix of the points
lying on the (p-l)-dimensional hyperplane will be singular, as its rank

will be (p-l) and not p.

.3.3 A Basic Probability

At the outset, let us make clear what we mean by points lying

"approximately" in a subspace. Our attempt will be to look for those

points which lie close to a (p-.1)-dLmensional hyperplane in a p-dimensional

space. Clearly, any (p-l) vectors always lie exactly on a (p-l)-dlmensional

hyperpiane, whereas a minimum of p vectors is necessary to overdetermine

a (p-l)-dimensional hyperplane. We will, therefore, look for those (p-l)-

dimensional hyperplanes which have p or more vectors lying close to them.

The singular case where p or more vectors lie, exactly, on a plane will be

ignored, since in this instance, those points lying on the hyperplane will



satisfy a linear relationship between the p-variables; this cannot happen

unless there isea deterministic linear relationship between the p-variables

in the population, and thus, any sample will reflect this relationship and

the p x p estimated variance-covariance matrix of any sample from such a

population will be singular. Since we require inverses of dispersion

matrices, we must exclude these redundancies. To determine, whether a

point overdetermines a hyperplane, we shall consider its Euclidean distance

from the hyperplane and examine whether this distance could be considered

negligible in a probabilistic sense. We need an expression for this

probability. The derivation follows the reasoning given by Bargmann E2 1.

Let P be a point in 2-dimensional space. We are interested in the ortho-

gonal distance of this point from a line, which is a hyperplane in,2-

dimemilonal case. Without loss of generality, we can assume the X-axis to

be this line (Figure 3.3.1). Let the vector OP subtend an angle 0 at the

origin with the X-axis. We must now assume that the reference axes span a

Cartesian frame (orthogonal, equal units along each axis). This implies

that a Gram-Schmidt transformation of the original observations (using S,

the within estimated dispersion matrix as the original metric) must precede

the calculation of probabilities of ovardetermination. With this assumption

we can now draw a circle with OP as radius. Let X be the foot of the per-

pendicular drawn from P on the X-axis. Then

PM *OP * sin 0

Therefore, 0 a sin-pM/OP - Bll 1 2PM/20P - sin-la/2h

Where a u PP' and h is the radius of the circle. Thus, the probability that

a point falls within the angle 0 on the circumference of the circle is given

by
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iI

I .

Figuro 3.3.1
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P 2 x len~th of arc generated by angle 20
2 circumference of the circle

- 2"OP.20/kR.OP

- 20/l1
m (2/11)arcs in(a/ 2h) ("3. 1)

'We can view the above probability either way--

(i) the probability of a point falling within an angle 0 as stated above

(ii) the probability of a point falling within the orthogonal distance of

+a/2 to -a/2.

The technique involved in generalizing the above probability to higher

dimensions, say k, is simple. We have to obtain the surface element of a

sphere of radius h in k dimensions and the, surface elemen= cut off by the

k-dimensional arc which subtends an angle 0 at the center of the sphere.

We shall illustrate the procedure for 3-dimensions before generali•-ing il

to k-dimensions. The 3-dimensional sphere can be obtained by revolving a

semicircle around its diameter. The surface element generated by arc be-

tween y -- a/2 and y - a/2 is twice the el,:nent generated by arc between

y f 0 and y - a/2 and hence the 3-dimensional surface element between

y - -a/2 and y - +a/2 can be expressed as

a/2

C3 - 2.2ln xds

0

where x 4 y 7 and ds - hdy/Y/•-2

a/ 2

Hence C- 2-24l (hi~ h' Y)/(/h 72) dy

0

- 2r1ah
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and S 3' the total surface element will be

h

2-2 (o r -a.f yh. ?)/(/h' - y2) dy

0

- 41K 2

Hence, P3 " C3 /S 3 - a/2h (3.3.2)

For k dimensions, the (k-l)-dimensional semisphere is required to be

revolved around a (k-2)-dlmensional hyperplane. In the above notaticn,

the probability Pk can be expressed as

s a/2 -/-2-- k-2

2*th h

b.-k-2 h -, ( y 2

P k . .h • ZF-',-
P, =, . p r2,,k

S• •" . _u..'__-hll--dy

h o k/ho)2 - 2

a/2

f ( A dy(,

f(A2..2)k-3 dy

'0

In the numerator of the above expression, substitute y - hsain. Then,

dy - hcosodo and the integral reduces to

0/2

hk-2 cosk-2 fd

0

where o/2 = arcsi- aI2h. By the name substitution, the denominator c~ould

be reduced to
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n1/2

hk- 2 r erok-2,dO

0

If we let sin z, this integral can be reduced to the complete BeLa

integral
1 .

41-" -

1 (l, -l 1 . 1/2 (1-:) (k- 3 )/ 2d

0

and the denominator could be reduced to

si in2 a/2

1 f z- ) 12 (k-3)/2
2 dz

Therefore, Pk' the ratio can be expressed as

r11 B(sin2a/2; 1/2, (k-1)/2) (3.3.3)

where the right-side of (3.3.3) is the incomplete Beta function. This is f
the probability of a point falling within (-a/2, +a/2) in k dimensions.

We will now make use of this probability expression in studying the simple

structure configuration.

3.4 Determination of Simple Structure Configuration

Let us assume that we have a total of n points in p-dimansional

space. As stated in the previous section, the probability, in p-dimensional

space, of a point falling within (-a/2, a/2) is given by

P p B(sin2 c/2; I,(p-l)/2) (3.4.1)
2

where a/2 arcsin a/2%. Without loss of generality, h could be taken to be

1. We are interested in determining whether these are points lying on a
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subspace. In a p-dimensional space, (p-1) points always lie on a (p-l)-

0 dimensional subspace. Thus out of a total ot n poinLu, wu i,•,tv. av'

able only (a-p•l) free points. Likewise, If we are to make any statement

about r points lying on a subspace, we can only look to (r-.p+l) points as

(p-1) of them will always lie on a subspace. If we 'denote by P the
p

probability of a single point lying within a fixed distance ±a/2 from a

given (p-l)-dimensional hypersphere, in p-space, the probability that

(r-p+l) points will fall in that region out of (n-p+l) Is given by

( np+l ,r-p+ 1 1 -r

Thus, if a region is to contain more than r'points, the probability would

be byven hv tho c1im11lAtvp h'rnomiR rh19i'trnn

p (3.4.2)

Also on the basis of the (n-p+l) free points available, the expected

ntumber of points (in excess of (p-1) falling in a (p-l)-dimensional region

is

(n-p+l) p (3.4.3)

The sum of binomial terms (3.4.2) can be evaluated by the incomplete Beta

function. The result can be summarized as

Pir or more of n points lie within ±a2]

,=B(P p; r-p+l, n-r+l) (3.4.4)

where P itself is an incomplete Bata function. If this probability is
p

very small we shall say that the simple structure subspace dctormiiied by
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the points lying on it is overdetermined. However, the probability of a

subspace being overdetermined itself depends on the probability Pp. We,

6heretore, need to consider the interval width and the probabilities, so

that the "prnh.,914ty of overdetermination" may be a meaningful concept.

Bargmann [2], in studying the overdetermined subspaces in relation to

factor analysi fixed the ratio a/h to be ±0.10. These criteria, which

reflect common usage in factor analysis, did not suit our requirements.

The object of this test, as will be discussed in Chapter IV, is

to suggest to the viewer of a graphics display, some vectors which are

normal to overdetermined hyperplanes. If no such concentration were present,

the expected number of points, would be, (according to (3.4.3) and the dis-

cussion on free points)

(n-p+l)P. + (p-1) (3.4.5)

After considerable experimentation, with n between 20 and 50, and p

between 2 and 5, we found that taking P such that the expected number ofP

points is (p+5), i.e.,

P = 6/(n-p+l) (3.4.6)

gave satisfactory results in the identification of overdetermined hyper-

planes by the Beta test (3.4.4). A value of P smaller than this was too
p

stringent so that a considerable number of points would have to lie on a

subspace before it could be considered well determined. The suggested

value of P was fairly moderate. We compensated for this value byp

tightening up the pxobability level for declaring a subspace to be over-

determined. We set this probability at 0o01.

The arbitrariness of choice of P and levels of significance may.P

be disquieting to some readers. They may be reminded though, that we are

dealing wi~h a phase of data analysis which is exploratory. A sample from
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a p-variate normal distribution, with a dispersion matrix of rank (p-i),

will always be on a (p-l)-dimensional subspace, exactly. There is no

test for a hypothesis in the population. Rather, we deal with an instance

where, after some linear tranusfurnaLloitus uthe original vaxiables, one of

them has negligible variance, after some points have been deleted from the

sample. Consequently, a decision as to what is negligible, and what is

"1"close to a plane" is really as arbitrary as declaring that, viewed from

some point in the universe, most (but not all) of the stars of a galaxy lie

close to a plane. In the final analysis, only the graphic display of

certain projections will reveal such intuitive configurations.

In our examples, the subspaces were overdetermined at much smaller

values than 0.01 which points to the fact that (3.4.6) was quite useful.

For the rest, the choice of critical values is as arbitrary as "0.05 level"

'-(because we have five fingers?) and the 0.01 level of significance. As a

guide for displaying configurations, our two levels of P and a were
p

"useful."
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CLUSTERS IN SUBSPACES--IDENTIFICA'ION

4.1 Introduction

In the previous chapter, we addressed ourselves to the statistical

aspects of well determined subspaces and derived a few pertinent geometric

probability expressions which may guide us to find such spaces. No men-

tion was made of techniques for finding such configurations. In the

present chapter, we consider (a) the technique of determining points lying

on a subspace; and (b) the problem of which variable could be discarded for

the points which describe an overdetermined subspace.

4.2 Overdetermined Subsvaces

The problem of determining subspaces in our case is rather similar

to the determination of simple structures in factor analysis. The

essential difference, however, lies in the fact that a factor analyst looks

for simple structure among variables. From data points, he constructs a

correlation matrix and gets a factor matrix by applying one of the many

suitable techniques available for this purpose. If he so desires, after

obtalning an initial solution of the factor matrix, he may obtain a

"preferred" representation, e.g., Lawley's form [14], etc. For a factor

analyst such a solution may not serve his purpose if he is interested in

relating the artificial variables to observable ones. In that ease he

will have to resort to some other forms of representation, such as the

simple structure technique. The number of artificial variables required
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to explain an observable variable is known as the complexity of the ob-

servable variable. For the purpose of interpretation of artitir-ial

variables, it is desirable that complexities of obaervable variables he

low. Both analytic and geometrical techniques are available to a factor

analyst to express the final solution in a form suitable for interpre-

tation.

We have a slightly different problem. First of all, we do not

look for any artificial variables to represent the observable variables.

Thus whereas a factor analyst works on a factor matrix, we work on the

data matrix itself. The starting point for a factor analyst is the

correlation matrix obtained from the data matrix. A somewhat similar

standardization is employed in our case, except that we standardize the

data matrix on the basis of cluster means and the "within" matrix and

then normalize the points to unit length. After displaying these points,

and the unit ellipses around the cluster means, on all 2-dimensional

directions, we proceed to single out those points which could be described

in terms of'fewer variables. In this connection, it does not concern us

how far apart these points are, as long as they lie on a subspace of

lower dimensionality. Thus this technique has an advantage that it can

identify points lying on a subspace even though they may be belonging to

different populations, or clusters. This is precisely what we had in

mind. The technique of cluster analysis assigns points to the populations

to which they belong. Leaving this structure intact, our new technique

determines points which lie on a subspace.

A discussion may be in order regarding the number of subspaces

one can find. If we can determine cne overdetermined plane, the chances

are that there are many planes in the vicinity of a plane already found.
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The reason is that, by "tilting" the plane already found, we can still

retain many of the points belonging to the original subspace found, pick

up a few new points and obtain another overdetormined plane. However,

we can reduce the multiplicity of subspaces by ignoring these additional

planes found which lie within a certain range of the original plane. This

can be done by requiring a minimum angle between the normals to two dis-

tinct planes. What angle should be maintained between two planes before

declaring them as distinct is a matter of choice. The "orthogonality"

preferred by some factor analysts is, at leat for our problem, quite

useless.

4.3 Identification of Subspaces

In this section, the general identification technique will be

•;UUL.L'oDea. Ler tnere oe n experimentai units, each with p measure-

ments. The data.matrix of order n x p will be designated as X. This

matrix is subjected to a cluster analysis program. If the data are

normally distributed, we need to use virtual clusters; hence we used the

program developed by Bargmann and Graney [5) for this purpose. After NG

(computer program notation) such clusters have been found, we may define

a matrix A, with elements aij, of order n x NG such that

aij - 1 if Vnit i belongs to cluster j

- 0 otherwise (4.3.1)

Let Dk (of order NG x NO) denote a diagonal matrix with elements kJ,

j - 1, 2, . . . , NG where k is the number of points assigned to cluster

J. Subtraction of cluster centers or cluster means from each point pro-

duces a matrix Y, formally given by,
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Y .X ADA'X (4.3.2)k
(T a•-l ARX (4.3.3)

NoW we can obtain an estimate of the common dispersion matrix £, using

the within-cluster sample dispersion matrix

s * (l/ne)Y'Y (4.3.4)

where no - n-NG. For the determination of subspaces, we must first

transform our reference frame to a Cartesian metric (which is, of course,

merely a computational device, and never actually displayed). As a con-

venient technique, we used the Gram-Schmidt ("Forward Doolittle")

reduction,

S - TT' (4.3.5)

where T is a lower triangular matrix with positive diagonal elements, hence

unique. In terms of this Cartesian reference frame, the data matrix is now

transformed into

Z - Y(T')" 1  (4.3.6)

* To find the "simple structure" subspaces, we look for unit vectors t, such

that

Zt. 0V (4.3.7)

and v has the property that as many elements as possible are close to

zero in the following senset

Let z' denote the ith row of Z and vi denote :he ith element of

v. Then it is clear that

,.t. vi (4.3.8)

The ith element in v, namely vi, Is considered close to zero if

V / * ( sin a/2 (4.3.9)

where sin a12 is determined by (3.4.1).
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Let us now consider the significance of the expressions (4.3.8)

and (4.3.9). t is a unit vector and so is z!//r:!.. Their "inner i I
product," //- therefore IM the cosine of the angle between the vectors

Sand z' But

-L/ IZ v/Vqi.i (4.3.10)

and hence v //z`z is the cosine of the angle between the vectors t and

z" Since t is unit normal to the subspace (4.3.9) is established.

For a given number of experimental units, n, and p measurements
4

on each of them, we can determine P using (3.4.6) and hence sin ca/2 using
p

(3.3.4). (4.3.9) is then a test to determine if the vector corresponding

to a given data point (reduced in terms of z's) is close to the subspace

to which t is orthogonal. If the vector (and hence the data point) is close

`'tO LnC suobpacL, we regard iihu p,.i.L,. ab 1iL.L.L9 inL•.h uvedeLt.IUdLLV U A L,,

and treat the corresponding element of v as "zero." We can examine each

element of v in this manner and determine how many "zero" elements are

there. It is the count of these "zero elements" which we subject to the

Beta test (3.4.4). If this test is significant, we say that the subspace

is overdetermined and report it as a solution, provided it is not "close"

to any subspace already found.

The transfoimation vectors t are found in a manner analogous to

Thurstone's "Analytical Method" combined with his earlier "Single Plane

Method" [36]. According to this method, each row of the reduced data matrix

Z is used as a point of departure to find a vector tL. Let us start with

the ith row vector z'. We shall assume that zi 1 , z 2 , zip are

elements of z'. Then t the initial approximation to _t is obtained by

nornalizing , i.e.,
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'oi' k - o. 'o2' " " * * op

with this trial, the projections

;Zt

are calculated and the elements vo are tested for closeness to zero.

If a value is very close, a large weight is assigned to the point, for the

subsequent weighted regression technique. If it is large, the weight may

be zero. Following Thurstone, we use discrete (step) weights, as follows:

If 0 < vo/vzz < sin a/2oi =-i.-

W - BND (BND, bound, initially 8).

If sin a/2 < voi/I'4-- < 2sin a/2

EM ND-i

If v o/47 _ > BND x sin a/2

ot :-i --i

Wi -0.

With these weights we can follow a weighted regression scheme to obtain an

improved vector .!, This can be further simplified by a relation (due to

Thurstone) which expresses

* (4.3.11)
lJ 1 - t u

oj j

n /n
whereu - v oVw2 IV/' ww . (4.3.12)

tlj , /.i.t* are then
ii tii -ýi-r-1

elements of the new trial vector tl. We calculate

v - Zt

and oncA again the weights are assigncd following the scheme detailed above.
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However, before assigning these new weighiL. L ":t& '•e 4a -a•duced to

3, in the next cycle to 2 and then kept at 1 for the remaining iterations.

Beginning with t , seven iterations are performed which give rise to
P -'t2 ' * " , t7 " The last one, t is retained as t and Z -

is formed. If the number of "zero" entries in thls', is significantly

• ~large as explained earlier, we will have determined a well defined sub--

space, to which t is normal. The entire'process is repeated, with each

row taken as a trial value. A given row may or may not identify a sub-

space. If it leads to an overdetermined subspace, the solution, except

for the first one, is checked as explained in section 4.2 to ensure that

the subspace is "different" from any of the ones already found from previous

rows. For this purpose, we require that the cosine of the angle between two

planes should not exceed 0.7 meaning that the planes were apart by at

least 45'. Once again we would like to mention that this is an arbitrary

requirement; we found this useful in our experimental studies.

Now we must retransform to the original data frame. The vectors

t that we obtain above, are with reference to the matrix Z. Our original

objective was to remove mean shifts and then look for experimental units

which lie on subspaces. However, in working with Z, we have removed the

mean shifts and also reduced the metric to an orthogonal Cartesian frame.

This was a matter of convenience. To restore the original metric, we must

obtain the solution in terms of Y. This can be easily obtained as under.

(4.3.6) is the transformation of Y into Z and (4.3.7) is the simple

structure solution in terms of Z% Substituting (4.3.6) into (4.3.7) we

obtain

Y(T'r1 t X (4.3.13)

from which we conclude that (T') lt is the transformation in terms of Y.
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The computer program reports both _t and (T') l. The vector t is reported

under the heading "Vector which transforms original factor matrix into the

above plane no. v " and (T')'I is reported under the heading "Trignsforma-

tion vector to transfer raw data to simple structure." The corresponding

elements of v are also reported. We shall also refer to elements of v as

the "loadings" or "scores" of original points with reference to the simple

structure plane determined.

For each L, only the vectors (T')-It are conveyed to the display

program, since we plot the original data points, in terms of the observed

variables. As well be explained in Chapter 5, the display program takes

one of the observed variables as one axis and some specified vector as

another axis. For a given choice of a variable and a vector, the vector is

reduced in such a manner that it forms an orthogonal frame of reference with

the chosen observed variable. A question may be raised as to why one of the

"axes always corresponds to an observed variable. In this connection, it

should be pointed out that a vector specified by the user, is equivalent

to an artificial variable, a linear combination of the observable ones. The

elements of the vector given by the user serve as weights in forming this

linear combination. When we view the displays with.reference to an ortho-

gonal frame of reference consisting of an observable variable against an

artificial variable, we can m•ake an inference as to how an observable

variable compares with an artificial variable. If both reference axes were

to correspond to artificial variables, the displays would be hard to

interpret in a realistic sense. This is our main consideration in insisting

that one of the axes correspond to an observable variable. Further, if we

choald permit a user to select any two vectors, these could be translated
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into an orthogonal frame of reference in many different ways leading to

utter confusion.

4.4 Rltmination of Variables

One notable difference between the rotational problem in factor

analysis, and the problem presented in this dissertation, is the fact

that the former'focuses attention on those points (variables, in that

case) which are far removed from the subspaces. By contrast, the latter

pays attention to only those points which are so close to a subspace that

they define it. It is these data points only which require one variable

less for adequate description. It should be noted, again, that such a

subspace is not a single region within the p-dimensional space. Rather,

for each simple structure plane, there are as many (parallel) (p-i)-

A-dimens:.oral hyperpJ.anes as there arip clusters. Points which, in this

sense, fall into the same subspace may be far removed from each other,

inasmuch as they may be in different clusters. But even with their

distinct neighbors, they share the property that the same (p-1) variables

are sufficient to explain their characteristics. It is for this reason

that we expect entirely new principles of classification of data points,

different from what could be expected by varying or refining cluster

analysis or factor analysis techniques.

Mathematically, we could use for description, (p-l1 linear combi-

nations of the original p variables, witb the combinations chosen within

the hyperplane orthogonal to the (T ', t vector. For real life interpreta-

tion, this procedure would be useless. Surely we are better off with p

observable vari bles than with (p-l) artificial ones. The principle of

parsimony is not just a principle restricted to dimensionality. It would
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seem reasonable, then, to eliminate, for the data points close to one of

the subspacce, s iaL uuscr;ablc v:arinhl- ahlirh contributes the least to

the decr.ription of this selection of data points.

As a measure of proximity of each variable to the artificial

variable which defines the subspace, we propose to use the correlation

between the origainal variables and the artificial variable. This can be

obtained as follows. Recall that Y is obtained from the original data

matrix after subtraction of the appropriate cluster means. Hence

2'Y M Of (4.4.1)

where -' is a row vector ,consisting of all I's and 0' is a null row vector.

Also,

J' f 'Zt

- tY (T't (By (4.3.6))I 0' (4.4.2)

and V'V - t'ZlZt

- n t'It

" n (4.4,3)e

since t is a unit vector. By virtue of the fact that Z'Z =n e, and

because of (4.4.1) (1/n e)Y'v will be an unbiased es.timate of the covar.ances

between the original variables and an artificial one on which the data

points have scores which art the elements of v. There will be as many v

vectors as there are overdetermined subspaces (each corresponding to a

different, but Possibly overlapping, selection of data points); For each

of these, we must determine its correlotions with the original varinbles.

Thus, if there are 4 variables and 3 different solutions (ovwrdetcriajVcd

subspaces), we will have a total of 4 x 3 = 12 correlations. New, for a

given v (a given subspacc)
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S¥'lv - ¥'zt

- Y'Y(T')- 1 t (By (4.3.6))

e of f,,. ,,-Rw, ((4.3.4) and (4.3.5))
-n Tt (4.4.4)

T Is the same lower triangular matrix that was used' in reducing the

metric underlying the matrix Y to a Cartesian reference frame. From

(4.4.4), we conclude that

(1/ne)Y'v -Tt (4.4.5)

Hence the estimated covariances between the original variables and a

sIngle ,rtificial variable, are elements of Tt. To obtain the cbrrela-

tions, we have to divide each of these elements by the square root of the

estJmate of the variance of the artificial variabie and the square root

of the estimate of the variance of the observable variable. Using (4.4.2)

rnnd (4.4.3), we conclude that the estimate of the variance of the arti-

ficial variable is

(l/ne)x'v - 1 (4.4.6) |

since a sum of squares &.y must be divided by degrees of freedom to

produce a variance estimate. Hence to obtain the correlations, we have to

divide the elements of Tt by the square root of the estimate of the vari-

ance of the observable variable only. In the computer program, after the

ector t is obtained, the product Tt is formed and the correlations are

then calculated by division of earh of the elements of Tt by the square

root of the estimate of the variance of the corresponding observable

variable. The estimates of the variances of the observables are still

available in the final step of the cluster analysis part of the program

and these values are stored for use at this time. T is also stored.
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once the correlations between the original variables and their

scores with reference to a subspace (i.e., vector y) are available, it

iIs easy to determine which variable should be discarded. in discritai-

Scant analysis, we come across the concept of correlatio, s between original

variables and the discriminant function. The discriminant function is

nothing but a linear combination of the original variables which dis-

criminates best between experimental units in a specified sense. The

purpose for which we want to discriminate is important as the discriminant

functions for different purposes are usually different. Given these things,

the variable which correlates most strongly in absolute value with the

discriminant function is the most important in discriminating. In our

study the vector t which transforms the original observations into. plays

a similar role in the sense that the elements of a well defined subspace

represented by v has most elements near zero (see section 4.3) and a few

far removed from zero. In analogy with discriminant analysis, v is the

4ector that produces the two groups of data points. Thus, the variable

which correlates most strongly with this artificial variable, contributes

most to the discrimination process. It is this maximally correlated ob-

served variable which should be eliminated for, after it has been discarded

the other variables contribute far less to the discrimination between these

two sets of data points. If only one variable is to be sought which would

explain the difference between these data points which fall into the sub-

space and those that do not, it would be this one which is closest (has

highest correlation in absolute value) to the expendable artificial variable.

Note the exact opposite of this technique to discriminant analysis, where

we seek the bcst discriminntor. Here we identify the "most expendable"

artificial variable. By our correlati6nal technique, we have identified,
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for each subspace, that observable variable which is closest to the

artificial variable not needed in the descripOLui W& ...........

subset. Note again, the need for this correlational interpretation.

If it were argued that the artificial variable itself ought to be dii-

carded, we would be left with (p-l) artificial varihbles, a rather un-

satisfactory situation. After the correlational approach, we have (p-1)

obserdve variables left.

'.•.,• • ...- ;.• , , ,, .• .
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CHAPTER V

DESCRIPTIONS OF COMPUTER PROGRAMS

5.1 The Computer Programs

The algorithms explained in previous chapters have been synthesized

into two computer programs which are available at the University of Georgia.

The first program, named CLUSTR, and described in the next section,

identifies the clusters and overdetermined subspaces. The second one is

available as a conversational system for the IBM 2250 Graphics unit. In

this chapter, we describe these two computer programs. The following

chapter will contain instructions regarding the use of these programs, and

the interpretation of graphical displays.

5.2 An'Algorithm for Identification of

Points Lving on a Subspace

In this program, beginning with the data matrix, we first identify

the clusters. This is essentially the algorithm proposed by Bargmann and

Graney 5 1. However, the algorithm proposed by Barggmann and Graney stops

at the identification process. Since we also need to identify points

lying on an overdetermined subspace, we extend the algorithm further. A

complete listing of the program is contained in Appendix A. This program

can be logically divided into 2 parts. Up to statement number.8ll, it is

essentially the reproduction of the program developed by Bargmann and

Graney [ 5 ], where a complete documentation of this part can be found. We

have made a small change in the program to suit our needs. As explained

in Bargmann and Graney (5 1, their program makes three passes to identify
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clusters. The passes made in their program are controlled by the state-

sment immediately following statement number 444. In our program,

CLUSTR, this has been replaced by the transition to the subapace-identifi-

cation program. Further, the program developed by Bargmann and Graney

[ 51 does not calculate cluster means or the "within" matrix after three

passes. Their program computes these quantities at the beginning of the

first pass, and after the first and second passes. We require these

quantities for our search for the points lying on subspaces. These

quantities are calculated in statements between number 811 And number

20001. At this stage, we also punch cards containing the means for each

cluster and each variable. These will be needed prior to the execution

of ELLIPSE described below. In statements between number .11020 and number

10001, we standardize the original points and reduce them to zero mean and a

Cartesian metric. This, then, is the beginning of the second logical part

of the program. Here, we determine the points lying on subspaces, using

the method of weighted least squares together with. Thurstone's "Analytical

Method" and the "Single Plane Method." The algorithms (including the

change of the BND variable) have been presented in sections 4.2 and 4.3

The output of this program consists of two parts--a print out and

a punched deck. The printed output contains the results of three passes

made to find clusters. The results listed after the third pass are th~e

final results relating to cluster analysis. It shows which point belongs

to which cluster. It also shows at what level the points got included in

the cluster. The second part of the printed output gives various simple

structure solutions. It giv.,es vectors which transform the original obser-

vations into simple structure planes. For each of these vectors, the

correlations between the original variables and the "scores" of poin•s
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with reference to this vector, the number of points falling into the

simple structure plane corresponding to this vector, and the probability

of these many points falling into this simple structure plane, are given.

A simple structure plane is not included as a solution if the probability

of the number oZ points falling into this plane is greater than 0.01 or if

it is within 450 of a plane already found.

Apart from the printed output, a punched deck is also produced.

These are data cards which are later loaded into data sets, as described

below. The first few cards in this deck--equal in number to .the number of

clusters formed--are the cards containing cluster means. The next set of

cards contains vectors which transform the original data points into

* simple structure solutions. The number of clusters is designated by NG

and the number of simple structure solutions is designated by NSOL. This

program also reproduces the cards for each data point with the following

additional information. For each data point, the card contains a serial

number in columns 1-3, the number of the cluster to which it belongs in

column 4, and the simple structure planes in which it is included in columns

.5-14. In column 4, a '1' is punched if the point belongs to cluster number

1, '2' if the point belongs to cluster number 2, etc. '0' is punched in

column 4 if the point was not assignable to any of the clusters. The simple

structure planes to which the point belongs is indicated in columns 5-14 as

follows: A '1' in column 5 indicates that the point falls into simple

structure numbc: 1, a '1' in column 6 indicates that the point belongs to

simple structure number 2, etc. (with provision for up to 10 solutions).

This is certainly more than adequate capability. Zeros or blanks In

columns 5 to 14 (the computer program punches zeros) indicate absence of

this point in the corresponding simplc structure plane. Columns 15-70
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contain the original coordinates of each data point. The entire punched

deck output is also printed out. The cluster means are printed at the end

of the third pass, and the vectors which transform the raw data into simple

structure solutions are printed inmediately after the printout of the

corresponding solution. The information punched into the last NP cards

of the punched deck is also printed as a final summary. The user may

find it helpful to keep this summary with him while he studies the displays.

5.3 Loading the Data Set (Utility

Program IEBGENER)

After the user has subjected his data to the CLUSTR program, he

should next run the IEBGENER program. This program supplies the output

of CLUSTR program as input to the ELLIPSE program. A header card, con-

taining the number of points, the number of variables, the number of f
groups, and the number of overdetermined subspaces identified by the

CLUSTR program, is put before the punched deck produced by the CLUSTR

program, and the IEBGENER program is executed. A sample deck set-up for

the IEBGENERprogratri is given in Chapter VI; this is a utility routine

which transfers the cards to disk.

5.4 The Disp].ay Program and the

Conversational System

The second program of the package serves to display projections

of the clustcrs and subspaces, on an IBM 2250 Graphics Display Unit. It

enables a user, at the console, to communicate with the system ahd to

manipulate displays appearing on the scope. The program, named ELLIPSE,

is capable of handling up to 8 variables, 50 data points, 10 simple

structure solutions and 5 groups or clusters. The numbering of the
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variables is implicit. The first coordinate, for each data point, is

regarded as variable number 1, the second coordinate as variable number

2, etc.

* The program is an interactive one in the sense that the user, at

the console, can decide on variations for later dihplays on the basis of

what he saw in the earlier ones. The input of the data is so formatted

"and programmed that, if a user wishes to reassign a point from one

cluster to another, or if he wishes to change cluster centers, etc., he

only needs to make a change to this effect in the corresponding data

cards. This capability gives the user an opportunity to redefine clusters

and subspaces on the basis of the displays generated. The interaction

between the user and the system is achieved through the use of the pro-

* grammed function keys and the alphameric keyboard which is a part of the

2250 Graphics Display Unit.

SThe. program includes a main program and 8 subroutines. The main

program calls two subroutines CALC and EXIBIT. CALC reads the entire in-

put into the ELLIPSE program. The input consists of a header card con-

taining the number of points, the number of variables, the number of

clusters and the number of simple structure solutions; cluster means for

each variable; vectors which transform the original data points (raw data)

into various simple structure solutions; and the data points, together

with information regarding the cluster to which a data point belongs and

whether or not it. lies on a given ovcrdetermined subspace. As explained

earlier, this input is given to the program through the execution of the

IEBGENER Utility routine. The first (executable) statement of the CALC

subroutine reads the header card. Following this, the DO 14 loop reads

cluster means, the DO 114 loop reads the transfurmation vectors and the
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DO 10 loop reads the data points. The array IG is used to store infor-

mation regarding the cluster to which a data point beiongs. Recall that

for each data point, columns 5-14 contained '1' to indicate the corres- I

ponding simple structure plan*o which this point belongs. This configu-

ration of 'l's and '0's is read as a 10 digit integer number and stored

in the first column of the two-dimensional array INNSOL. The serial

number of a data point is stored in the second column of INNSOL. In the

DO 422 loop, the array IG is examined to determine the size of each cluster.

The DO 429 loop, then, determines the total number of points assigned to

clusters. The subroutine COR2 is now called which yields the within sum

of squares and products matrix based on all the points belonging to

clusters. The upper triangular part of this symmetric matrix is stored,

columnwise, in the array DSPROD. In the DO 434 loop, each element of the

array DSPROD is divided by n¢, the degrees of freedom, to yield art esti-

mate S of the common variance-covariance matrix, E. Immediately following

the statement number 434, SINV, a sub-routine from the IBM Scientific

Subroutine Package, is called to invert the matrix S. The inverse of this

matrix S, stored as the first column of the t3io-dimensional array A, is

the metric (based on all points belonging to clusters) employed for unit

ellipsoids around the clusters. The subroutnien CALC then calculates

aetrics corresponding to overdetermined subspaces. For each of the over-

determined subspaces, the DO 426 loop calculates a metric corresponding

to each of the overdetermIned subspaces on the basis of the points be-

longing to it. The inner DO 427 loop examines the 10 digit integer num-

bers stored in the first column of the array INNSOL to determine the

points lying on a particular subspace. For each subsacc, the subroutine
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UUK1IS s utilized to calculate a new within-cluster sum of squares andI ~ products matrix.' In the DO 442 loop, each element of Lhis matrix in

divided by the number of points belonging to the averdetermined subspace,

to yield an estimate of the variance-covariance matrix based on the

points belonging to the subspace only. The subroutine SINV is then

called to iLnvert' this matrix. The inverse matrix is used as the metric

for ellipsoids corresponding to the overdetermined subspace. The metric

corresponding to the overdetermined subspace number 1 is stored as the

sicond column of the two-dimensional array A, the metric corresponding to

the overdetermined subspac~e number 2 is stored as the third column of the

array A, aet. This is accomplished in the DO 433 loop. The DO 15 loop,

beginning at statement number 450, ca'lculates the maximu= and minimum

values for each variable. These max~imum and minimum values are required

later for scaling purposes to accommodate each of the projected data

points within the screen limit.. A flow chart for the subroutine CALC is

*given in figure 5.4.1.

Subroutine EXIBIT

The subroutine EXIBIT begins with a call to the DISPLA subroutine

of the GRAF (Graphics Addition To Fortran) package [16]. This results in

setting up GDSX, GDSY, GTEXT,. GPOINZT, GDSE, GOSER and GINPUT as display

variables. The subroutine LIGHTS of the GRAF package is next called to

turn on the lights corresponding to the programmed functioa keysý numbered

1 up to the number of variables, keys 27 to 29 and 31. After these pre-

liminaries, the subroutine MESSGE Is called to display an informative

message about the program, for the benefit of the user. The subroutine

MIESSGE returns the control to the subroutine EXIBIT as soon as the user
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presses any programmed function key. The message appearing on the

screen is erased, a variable NTEST (used later to register tue depressed

key) is set initially equal to I and a variable NGG (eflasg which is used

to indicate change of vectors) is set equal to 0 and the control goes to

statement number 20. This statement is a call to the subroutine KEYIN,

with NTEST, the input argument having been set equal to 1. The subroutine

KEYIN acc.epts from the user a vector and the number of a variable, in

order to form a 2-dimensional plane. The user indicates his choice of

* the number of the variable by pressing the corresponding programmed

function key. The variable NAXIS is used as an output argument of the

subroutine kElIN and on return contains the number of the programmed

function key pressed by the user. As will be seen later, on return from

KEYIN, the variable NAXIS must either have a value equal to the number of

the variable the user wishes to utilize, or 30. If NAXIS equals 30, it is

implied that the user wishes to stop and the display program comes to an

end. Otherwise, the subroutine ELLPSE is called with the current value

of NAXIS (the number of the variable) as input argument. The subroutine

ELLPSE displays the projections of the original data points, and the unit

ellipsoids having the metric based on all the points belonging to clusters,

onto the 2-dimensional plane formed by the veator and the variable

supplied by the user, providad there is no singularity or redundancy in-

volved (see ELLPSE below). After the above displays appear, the user is

expected to press a programmed function key. If he presses key *29 or 31,

the control cotaca to statement number 80. This results in erasing the

current displays and then a call to the subroutine KEYIN, with NTEST,

theinput argument, being 29 or 31. As before, the call to the subroutine

KLYIN is followed by a call to the subroutine ELLPSE and the cycle
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continues. If a key corresponding t( the number of an overdeterrTin,.d

subspace was pressed, the control comes to statement number b1, and if

key 30 was pressed, the di play program comes to an end. If the ccntrol

comes to statement number 61, the sibroutine REL 1h is ciid Z!;,

the projections of the overdeteLiad sub•p-ce: Tf 'none of the above

mentioned keys is pressed, an error message, as contained in the format

K statement number 62, appears on the screen. The error message continue.

to appear until the user presses a proper key or, in case of singular or

redundant situations, rectifies the situation. If the subroutine RELPSE

is called, after the projections of the overdetermined subspace aTe dis-

played, the user is expected to press a programmed function key. Once

again, if key 29 or 31 is pressed, the current displays are erased, the

control comes to statement number 20 and the subroutine KEYIN is called.

The program terminates if key 30 was pressed. If the key corresponding to

the number of the overdetermined subspace'was pressed, that part of the

-current display pertaining to the projection of the overdetermined sub-

space is erased, and the subroutine RELPSE is called to display the pro-

jections of the overdetermined subspace that is now being requested. An

error message appears if n..ne of the abovementioned keys is pressed, and

,iie c¥-L; -ontin,-s in tb-r manner. A flowchart of the subroutine is

given in figure 5.4.2.

Subroutine KEYIN

The subruutine KEYIN accepts a vector and the number of the

variable from the user, to form a 2-dimensional plane. It has one input

argument, NTEST, and an output argument, NAXIS. The first statement in

the subroutine tests the value of NTEST. if it equals 31, rhat parr of
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lhp Rtihrottflnp whi.h Ac-rent a vector from the user is skioned. and the

control comes to statement number 101. Otherwise, the control comes to

statement number 99, and whatever appears on the screc&a is erased to pre-

pare to accept a vector from the user. On the first call to the sub-

routine KEYIN, the input argument, NTEST, is set equal to 1 so that the

control invariably comer to statement 99. On subsequent occasions, how-

ever, NTEST will have a value of 29 or 31. The DO 110 loop displays the

transformation vectors zuggested by the rotation (CLUSTR) program for the

information of the user. The message contained in the format statement

number 3000, requesting the user to supply a vector, th n appears on the

screen. The program now awaits the user to supply the vector. The

calls to SCTDV and DVTDM subroutines of the GRAF package transfer the

vector s-iovlied by the user from the screen to the display variable table |

and from there to the dumnmy unit 4. The vector is read from the dummy

unit 4 into the array RINPUT. Before, however, the vector is read, the D0211

loop transfers the current values stored in the RINPUT array to the RVW.RNG

array. This is done to insure that the vector previously supplied by the

user is not destroyed in case he wants to continue with that vector. The

DO 213 lvop checks If the user supplied a null vector. If so (as is the

case when he just wants to continue with the previous vector), this is

always replaced by the previous non-null vector as would be apparent from

the DO 216 loop. The only exception, as will be seen from the statement

following the statement number 213, is the first call to the subroutine.

This would result in singularity and the user w.ill receive an error

message instead of the displays.

_ 2



I

57

After the vector is accepted, the control comes t3 statement

number 101. The message contained in the f ,trmat statement number 1658

appears on the screen. The loop beginning with the statement number 60

insures that no value other than 30, or the number corresponding to the

variable which the user wishes to utilize, will be returned as the value

of the output argument NAXIS. The user can, of course, go back to state-

ment 99, the beginning of the program, if he presses key 28. This gives

him a chance to amend the vector already supplied. A flowchart of the

subroutine is given in figure 5.4.3.

Subroutine ELLPSE

This subroutine is used to display projections of original data

points, and the unit ellipsoids having the metric bn.•d on all points be-

longing to clusters, onto the 2-dimens-onaL p.J.ane tormed oy Like vectu± ,Ifl

the variable supplied by the user. The DO 10 and DO 11 loops set up a
'matrix R formally given by

70 a1

0 82

Ru

1,0

0 a

- pi

0 a p 5.4.1)

where 1 in the first column appears in the row corresponding to the number

of the variable cho,-ý;l by the uuer, and (al, a2 , . . . , 0, a ) is

the vector supplied by the user and modified to form an orthogonal ixis
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• key press e.....
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t press proper key
EXIBITFue ..

SFiguce 5.4.3
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with the desired variaLle. If the user supplies a vector collinear with

will have all zero elements. The DO 20 loop, and the statement immedi-

ately following this loop, check for the above-mentioned possibility of

singularity. If no singularity is present, the control comes to state-

ment number 211;.otherwise, the error message, as contained in the format

statement number 1659, is displayed on the screen, and control is returned

to the subroutine EXIBIT. At statement 211, the DO 21 loop is set up to

normalize the second column of the matrix R. The DO 12 loop picks up

the metric S"I based on all points belonging to clusters and the sub-

routines MJPRD and GTPRD of the IBM Scientific Subroutine Package are

called, to form the matrix product R'S'IR. The DO 13 loop, and the-state-

ment immediately following it, calculate the matrix product XR, where X is

the matrix of original data points. For a projected data point, the

element of the first column of the matrix is treated as its x-coordinate

and the element of the second column is treated as y-coordinate. The DO

1.0 loop creates orders to plot points with these sets of x and y coordi-

nates. The actual plotting is do- hy diplaying, on the screen, at the

place where the point should appear, it,ý serial number, so that the user

may know which data point projects into what region of the 2-dimensional

display.

In the statements immediately following the DO 110 loop, the semi-

axes of the ellipses to be displayed are calculated. They are based on

the metric R'S-IR (of the projected ellipsoids). The cluster centers

(centers of ellipses) are likewise transformed into Lt iR. The points des-

cribing the circumference of the ellipses
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(-X - R) R'S-1R (x - R'k) = 1 (5.4.2)

where x' - (xl, x2 ) are the running coordinates, are constructed by

angular sweep. Beginning with an initial angle of 5o the DO 150 loop

calculates 72 different points describing the circulnference of the

ellipses. The DO 100 loop creates orders to plot these points and the

ellipses appear'on the screen when the statement immediately following

the DO 100 loop is executed. A flowchart of the subroutine is given in

figure 5.4.4

Subroutine RLLPSE

This subroutine is used to display projections of ellipsoids

having metric based on the points belonging to the overdatermined subspace

being superimposed. If the metric for the ith subspace is denoted-by

S i, the subroutine calculates the points describing the circumference of

ellipses

(- 4R) R'S 1iR (x RI)- 1 (5.4.3)

where R is as defined in ELLPSE. The technique employed to calculate these

points is similar to the one employed before. Like ELLPSE, PELPSE also

checks for singularity. If it is present, no displays of ellipses appear.

It is to be noted that, if the user chooses one of the vectors suggested

to him in the display (the vectors identified in the CLUSTR program), the

ellipses constructed in RELPSE, if the user depresses the corresponding

key, is quite flat, as intended. It is conceivable that, in such an

instance, singularities could occur (though we did not see any in our

examples) and hence the program checks for them.
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Overlay Structure

To reduce storage requirements, an overlay structure was de-

signed as toiLows:

1. (Root) contains the main programanA FunctionXD.

2. Contains subroutine CALC o

3. Contains subroutine CORISB

4. Contains subroutine COR2

- 5. Contains subroutine EXIBIT

6. Contains subroutine MESSGE

7. Contains subroutine KEYIN

8. Contains subroutine RELPSE

9. Contains subroutine ELLPSE

Segment 1, along with the main program and function KD, also

contains the system support routines IBCOM#, ARIH#, FIOCS#, ADCON#, and

system utilities IHCUATBL, I1CUOPT and IHCTRCH. Segment 5 contains all

of the GRAF routines required except BUFRS, CUR$$, RCUR$, READSC, SCNDrfK

and SCTT)V, which are included in segment 7. With the help of this overlay

structure and equivalencing'of a few arrays in the ELLPSE subroutine, it

was possible to reduce the storage requirements to 64K bytes.

Deck Layout for ELLIPSE

//STEPI EXEC FORTCI
//FORT.SYSLIN DD 1SNINE=&&CI1AIN(ROOT),SPACE=(TRK, (150,10,5)), C

UNIT=SYSDA,DISP=(NEW,PASS)

//FORT.SYSIN DD k
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Hain program here

//STEP 5 EXEC FORTGC

//FORT. SYSLIN DD DSNAMtE-&&CHAIN(LINKA3) ,DISP=(MiOD,PASS) ,UNIT'-SYSDA,

//FORT.SYSIN DD*

Function KD Source Deck

/ISTEP2 EXEC FORTGC

I/FORT. SYSLIN DD DSNAM4E-&&CHAIN(LINKA),DISP-(MOD.PASS) ,UNIT-.SYSDA

//FORT.SYSIN DD*

Subroutine CALC Source Deck

//STEP7 EXEC FORTGC[K i/FORT. SYSTIN DD D N -E&&CHALN CLINKAS) ,DISP- (MOD,PASS) )UNIT'-SYS.DA

//FORT.SYSIN DD*t ~Subroutine COMi Source Deck

//STEP6 EXEC PORTGC

//FORT.SYSLIN DD DSI4ANE-&&CHAIN(LINKA4),DIS~u(HtOD,PASS),UNITuSYSDA

//FORT.SYSIN DD*

Subroutine COR2 Source Deck-

//STEP4 EXEC FORTGC

I/FORT. SYSLIN DD DSNAIEa& &CILAIN (Lfl4KA2) ,DISP= (MOD, PASS), UN IT=SYSDA

//FORT.SYSIN DD*

Subroutine EXIBIT Source Deck
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Subroutine EXIBIT Source Deck

lISTEPO zxEC FCRTCC -

I/FORT. SYSLIN DD DSNAM'E-&& (CHAIN (LINKA8) ,DISP- (MOD, PASS) ,UNIT* SYSDA

//FORT.SYS*LN DD*

Subroutine MESSGE Source D..ck

//STEPIO EXEC FORTGC

I/FORT. SYSLIN DD) DSNA1IE-&&ClAIN (LINKA9) disp- (MOD, PASS), UNIT-SYSDA

//FORT.SYSIN DD*/ Subroutine KEYIN Source Deck

//STEP3 EXEC FORTOC

//FORI. SYSLIN DD) DSNAML?==& &CHAIN CLINKt11) , DI SP- (MOD, PASS), ,U1ITMSY SDA

Subroutine ELLPSE Source Deck

//STLPB EXEC FORTGC

//FORT. SYSLIN DD DSNAZ4E-&& CIIAIN (LINKXA6).,DISPm (MOD PASS), VIT=USYSDA

//FORT.SYSIN DD*

Subroutine RELPSE Source Deck

i/SIO EXEC LKED,PARNl-(LET,LIST,OVLYi,XREF)

//L1ED. SYSLMOD DD DSNaSYS1 .CRAPUILIB (ELLIPSE) ,DISP=SlIR, C

II SPACE= (TRY., (0.0 )

I/I.KED. SYSLI B DD DSN=SYSl.CPArIB ,DI SP-SllRf
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/1DD DSNinSYS1.UGALI~,DISPwSHR

IIDD DSNinSYS1.FORfLIB,DISP-SHR

IIDD DSN-SYS1.LINj(LIB,DISP-SHR

Di D DSN-SYSl.GRAPHLlB,DlSPuSlM

//LKED.14ODUI.E DD DSN=&&CHAIN DISP-OLD

//LKED.SYSIN DD*

IN~CLUDE bIODULE (ROOT)

INCLUDE MODULE (LINWKA)

114CLUDE SYSLIB(IBCOH#)

IINCLUDE SYSLIB(RD 1

INCLUDE SYSLIB(FIOCS#)

WncLUDT SYSLIB (ADCQN1#)4EEELUE ;YSLIB(IHCVATBL)

ICUESYSLIB 
.1ON

INCLUDE. SYSLIB (IHCTRCH)p

OVED.lAY ONE

INCLUDE MODULE (LflNKA)

INCLUDE SYSLIB(SINV)

INCLUDE SYSLID (M:FSO)

OVERLAY TWO

INCLUDE MODULE (LIN1(A)

OVFRlAY TWO

INCLUDE MODULE (LINY.A4)

0%VERL~AY ON4E

INCLUDL~ MODULE (LINIA2)
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INCLUDE SYSLIB (GAFERR)

INCLUDE SYSLIB(LIGHTS)

INCLUDE SYSLIB (WRRFiT$)

INL4UDE1 SYSLIB(DETEKT)

INCLUDE SYSLIB(PLOT)

INCLUDE SYSLIB(DETAIN)

INCLUDE SYLBDIPA

INCLUDE SYSLIB($$OVER)

INCLUDE SYSLIB CCHAR)

INCLUDE SYMLB(POINT)

INCLUDE SYSLIB(LINE)

INCLUJDE SYSLIB(PLACE)

INCjLUtrE SYSLIB($$$$BT)

INCLUDE SYSLIB($$INIT)

INCLUDE SYSLIB (DUIMY$)

INCLUDE SYSIB ($VOVER)

INCLUDE SYSLIB (CLOSE)

INCLUDE SYSLIB(LINE$$

INCLUDE SYSLIB(UNPLOT)

INCLUDE SYSLIB(PLACE$)

[INCLUDE SYSLIB(POINT$)

INCLUDE SYSLIB (BLANK)

LINCLUDE SYSLIB (BRASK)
INCLUDE SYSLIB(RrCET)

OVERLAY TWOA

INCLUDE' MODULE (LlNKAS)

OVF.RLAY TWOA



67

INCLUDE MODULE (LINKAg)

INCLUDE SYSLLB(SL•N0IV•)

INCLUDE SYSLIB(CUR$$)"

INCLUDE SYSLIB (BUFRS)

INCLUDE SYSLIB (SCTDV)

INCLUDE SYSLIB (RCUR$)

INCLUDE SYSLIB (READSC)

OVERLAY TWOA

INCLUDE MODULE (LINKA6)

OVERLAY TWOA

INCLUDE MODULE (LINKAl)

L_



"HAPTER VT

USER'S GUID4

6.1 Introduction

The user who is interested in using the programs described in

the previous chapter would find himself in one of the following situations:

(i) He may not have analysed his multivariate data and may not yet have

identified clusters and subspaces. If so, he should first subject his

data to the CLUSTR program. The next section contains instructions on

how to use (execute) this program.

11i fne WUtV I4V1 a1alydbW! iLL.6 .K 1LuA ubiitg &Cit! CLUSM pu.&LU luuL i ,,U

loaded the data set for the ELLIPSE program. If so, he should execute the

IEBGEYNER Utility rou .... e and load the data~set. This is described in

section 6.3.

(Iii) Finally, the user may have gone through the steps (i) and (ii) above

and may want to see the displays of projected clusters and subspaces. The

use of the ELLIPSE program including an indication of what to look for in

the displays is described in section 6.4.

Section 6.5 contains an illustration.

6.2 The CLUSTR program

The analysis of the user's multivariate data begins with the

Identification of clusters and overdetermined subspaces, if any. For this

purpose, the user must first analyse his data using the CLUSTR program.
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This is a batch program. VTe following data cards need to be

supplied:

Data Card 1

Columns 1-3, number of points (individuals or experimental units)

Columns 6-7, number of variables (responses) measured on each

experimental unit

Columns 8-11, alpha level for cluster core on first pass
(suggested value 0.90)

Columns 13-16,*alpha level for cluster extension on first pass
(suggested value 0.50)

Columns 18-21, alpha level for cluster core on second pass
(suggested value 0.90)

Columns 23-26, alpha level for cluster extension on second pass
(suggested value 0.50)

Columns 28-31, alpha level for cluster core on third pass
(Suggested value 0,90)

Columns 33-36, alpha level for cluster extension on third pass
(suggested value 0.50)

Data Card 2
This is a variable format card and should contain the FORMAT by

which each experimental unit is to be read.

The remaining data cards contain the observations, one card (or record

"which may consist of several cards) contains the coordinates of one point.

The numbering of these points is implicit, according to the sequential

order of these cards.

Cur suggestion above that 0.90 should be used as alpha level for

cluster core and 0.50 as alpha level for cluster extension is empirical.

Of course, he can use any other set of values. For a detailed discussion

of this matter the reader is directed to Craney (10).
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The output of this program has been discussed at length in

S=ct!'m %.2 The punched deck produced by this program is required for

the ELLIPSE program.

As explained in section 5.3, it is necessary to execute the

I,' IEBGENER Utility routine to load the output of the CLUSTR program into a

data set required as input to the ELLIPSE program. The deck set-up for

the execution of this htility routine is as follows:

(i) JOB card

(ii) //STEPG EXEC PGC=IEGLENER

(iii) //SYSPRINT DD SYSOUT=A

(iv) //SYSTN DD DUMMY

(v) //SYSUT2 DD DSN=SYS] ,R2250,VOL=SERI=UGA231,DISP-SliR,UNIT-2314

(vi) //SYSUTI DD DATA,DCG=(RECId--FB,LRECL=80,BLKSIZE-320)

(vii) Data Cards

(viii) /*

The data cards cuasist of a header. card followed by the punched deck

produced by the CLUSTR program (of course, the user could produce his

own data cards, and any assignment of points to clusters or subspaces

which he desires. In this respect the CLTSTR program is merely intended

to give him guidance-.-but a very strong one indeed) . The header card is

made up as followst (all numbers right justified);

Columns )-4, numburt of points (individuals or experinental units)

Columns 5-8, nurnbcr of vwriables (responses)measured on each
experillental unit
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Columns 9-12, number of clusters identified by the CLUSTR
program

Columns 13-16, number of overdetermined subspaces (simple
StruCLuLu l-- ) ... • fIlod hy CLUSTR Program

After the IEBGENER Utility routine is executed, one is ready fut the

ELLIPSE program.

6.4 The ELLIPSE program

This program works under the control of GMS (Graphics Monitor

System). For greater detail on the operation of GMS see Penn [31]. In2 order to be operational under the conversational GMS, the load module of

the program has to be a member of the partitioned data set GRAPHLIB. The

user should verify, by typing the command $NAMES on the console typewriter,

[:•that the program, in fact, is a memiber of the GRAPHLIB data set. If not,,,

the user will first have to compile and link edit the program using the

deck set-up given in section 5.4. The user can then execute the program

using the command SLINK ELLIPSE to link to it.

Photographs made during the use of the program are reproduced here.

The user will find it helpful to refer to them while studying the rest of

the section. Some of the photographs will be specifically discussed in

the next section.

The execution of ELLIPSE begins with the display of an informative

message. The user should carefully read the message. (Note especially

the use of the programmed function key 30. This is to be pressed only

when it is desired to stup the execution of the program.) The user should

then press any key other than 0 or 30. He is now asked to type the

coordinates of a vector which he wishes to utilize in order to form a
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tmie, PROMGR", DISPLAYS CLUSTERS BY PROJECTING THEM ON

. .UBSPACES.SI IPLE STRUCTURE

SOLUTIONS CAN ALSO BE INDICATED.REFER TO YOUR

INSTRUCTION CHART.HAVE YOU ENTERED ALL NECESSARY

DATA VIA IEOGENER?

THE 8OTTOtI (•w OF THE PROGRWAM

FUNCTION KEYS IS LIT UP.ThEY WrILL D USED

AS DIRECTED.THE.DARK ONE,#EY NO, $o,,s

THE PANIC OUTTON.IT WILL RETURtl YOU TO THE

MONI TOR.

IN CASE OF PANIC PRESS KEY 30

SOW P, SS ANY KEY TO GET STARTED

iI
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ACCORDING TO THE ROTIATIQN PROGRAM THlE

FOLLOUIING VECTORS TRANVFOII RAW1 DATA INTO

SIMPLE STRUCTURE SOL.UTIONS NO.i TO 3
p.%ft A ;.5-Il (A Or•t,-A• *toc

0,e02 O.&8q--O.is 0.1514

.~0 . -0.25'•-'e. 3 Ib 0.

ENTER A TRANSFORMATION ,ECTDR.

NO tlORE THAN I CHARACTEIM,DECIMAL POINT

MUST BE TYPED
DEPRESS JUMP KEY AFTER EACH COORDINATE

.X(•}=I

X(4) 1
X(2)=
X(3)=
X(7)=
X(s)=

X(I)=

t.r Dprvinus VECTOR NOJU'.'T PRESS% EDO'

u •

Ii
I
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ACCORDIN~G TO THE eflTAmf PROGRAM THE
*FOLLQUING VECTORS T7.AN'c4FfQt1 RAW DATA INTO

S111PLE STRUCTUR~E IKULUTIONS Na. I TO 3J
1 0.101 -02 5 O '4 O.C.%G0.309II -0.Ob-$2~9-0.31~0.Bd40
* ENTER A TRANSFOP.I1ATION VECTOR0

NO mnO(E THAN I CHARACTS.uSDLC11 AL POINT
MUST BE TYPED
DEMSS JUMiP KEY AFTER-EACH COORDINATE

K 01ý.316

x0.b

I .f,,.VIOSVE Tvou 0~ro (J?, 0wJ UST. P rESS, EO0
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PRESS ONE KEY CORE.,POIDING TO THE AXIS
- VARIABLE YOU UISIH T.S.ELr.CT. V, 30 IF

YOU WISH TO %TOP.IF YOU V$,- TO MAKE
CHARGES Ita YOU": VECTOR PRESZ •EY 2k.
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2-dimensional plane, the other axis being an observable variable. Notice

that vectors which transiuLu tha cri~ins! -inta ooints into overdetermlned

mubepaces appear In this display for the user's ready reference. The user

should try one or more of these vectors but he may also supply any number

of other vectors, if he feels that this would help him interpret the

structure of his data. The coordinates of the vector intended to be used

should be typed in through the alphameric keyboard. The place where the

digit (or any character for that matter) typed will appear on the screen

is indicated by a cursor. The use of the "JUMP" key after one coordinate

is entered, will cause the cursor to move over to the place for the next

coordinate. After all the coordinates of a vector are entered, the user

should press EOB. This is done by pressing both the 'ALT' and the '5' key

of the alphameric keyboard. The first time the user is asked to supply a

vector, he must give a non-null vector. (Later on, null vectors will be

acceptable and simply mean that there is no change. At that time the user

would just press EOB when this display appears and thus indicate that he

does not wish to change the previous vector.)

After the vector is supplied, the user is asked to choose a vari-

able as the other axis of a 2-dimensional plane. The choice is made by

pressing the programmed function key corresponding to the number of the

variable; if variable number I is desired, press key 1, etc.

After a vector and a variable have thus been chosen, the desired

2-dimensional plane will appear on the screen. The abscissa corresponds

to the variable, the ordinate corresponds to the chosen vector. The legend

(numbers given alongside the coordinate axes) indicates minimum and maxi-

mum values. The serial number of each data point is projected at the

appropriate coordinate:. Ellipses, i.e., projections of unit ellipsoids,
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based upon the within-cluster metric of all points, are drawn around

each cluster center. These ul11 .... t " -- t ccnc!t^ n • tandard

unit interval In one dimension.

One aspect to be observed on the screen at this time is whether

the points which supposedly belong to the same cluster, are close to-

gether (regardless which axes or vectors are used), and whether one could

distinguish them visually from points belonging to a different cluster.

There may be some overlaps but the clusters should be visually distinct.

If certain points exhibit the above phenomenon in all displays, then they

can be regarded as forming a cluster.

The user has now a choice. He may wish to superimpose one of the

overdetermined subspaces, or he may wish to change the vector, or the

variable, or both. To change the vector, he presses key 29, to change

the number of the variable, he presses key 31, and to superimpose an cver-

determined subspace, he presses the key corresponding to the number of

that subspace.

Superimposition of an overdetermined subspace results in the

display of projections of unit ellipsoids having metric based on only

those points which belong to the overdeteimined subspace. If the plane

of projection selected is orthogonal to the overdetermined subspace, the

projections of unit ellipsoids under reference will be flat and elongated.

Further, the projections of the points lying on the subspace will make a

r.arrow band (almost resembling a straight line). Tlhe plane of projection

would be orthogonal to the overdetermined subspace, if the vector which

transforms the original data points into this overdetermined subspace is

supplied as the desired vector. As many different planes as there are
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dimensions can be constructed by taking this normal vector against each

of the variable axes.

The plane of pkojection, in a way, ib Lhe direction from which we

look at the ellipsoids embedded in the p-dimensional space. The ellip-

soids having metric based on the points belonging to an overdetermined

subspace must necessarily be flat and elongated. However, they must be

viewed from the proper direction. Otherwise, this elongation may not

appear or, in some instances, they will appear as very small circles.

Once again, the user can press key 29 to supply a new vector, key I
31 to change the number of the variable and the key corresponding to the

number of an overdetermined subspace to superimpose the subspace. The

program continues in this manner. It can be terminated at any time by

pressing key 30.

It chould be noted that the projections onto a plane formed by any

pair of observable variables is a special case. If the user desires to

have projections onto the plane formed by variables I and 2, say, all he

has to do is supply (1.0, 0.0, . . . , 0.0) as the Vector and press key 2.

In fact, since the program does not necessarily require normalized vectors

as input, any vector of the form (a, 0., 0, 0 . . , 0) where a # 0, results

in the selection of variable 1 as one of the axes.

6.5 An Illustration

The programs described above were used in the analysis of artificial

data. The data consisted of 45 points and 4 variables. These data were

generated in the following manner. First, 180 normal deviates with zero

mean and unit variance were generated; they made up the 180 elements of a

45 x 4 matrix, numberec' coltun-wise. The first 25 measurements on the 4th
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variable were then redefined by the relation

a(I) -Z(WiojL t W1 ZL - LW'~ + z(i - 9JU) + Z(l 45))/3

I m 136, 137, .. , 160

i.e., the first 25 observations on variable 4 were replaced by one tenth

of the original observation plus the mean of the first three variables.

Similarly, the last 25 observations on variable 3 were replaced by the

relation

z(I) - z(I)/lO + (z(I -90) + z(W -45) + z(l - 45))/3

,. ~I a 111, 112, ... ,135

The modification of the data matrix by these two operations built in 2

subspaces. In effect, the first 25 observations on variable 4 became

almost a linear combination of the remaining 3 variables and the last 25

observations on variable 3 similarly became almost a linear combination

of the remaining 3 variables. Still, however, all the variables had zero

mean, and to introduce mean shifts, the vectors (3, 9, 5, 9), (5, 9, 7, 3)

and (7, 3, 7, 5) were added to the first 15 observations, second 15 obser-

vations and the last 15 observations respectively. Thus the entire data

matrix became a simulated sample drawn from normal populations with mean

vectors (3, 9, 5, 9), (5, 9, 7, 3) and (7, 3, 7, 5) and two built in sub-

spaces. This data matrix was then subjected to the first program of

cluster identification and subspace determination. This program correctly

assigned the first 15 points to one cluster, the second 15 points to

another cluster and the last 15 points to a third cluster. The subspace

identification part of the program gave 3 overdetermined subspaces. This

was not at all surprising.since the two planes were already built in and,

as frequently happens in such instances (see section 4.2), a plane was

found somewhat in-between the two constructed planes. The cosines between
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the normals to these three planes were as follows:

1 2 3

"2 -0.29684 1.00000 0.02303

3 0.00673 0.02303 1.00000

The planes identified were as under (serial numbers of points belonging to

the planes are given).

Plane 1: -- 12, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37,

38, 39, 40, 41, 42, 43, 44, 45, (24 points)

Plane 2: -- 2, 9, 14, 15, 17, 18, 29, 30, 32, 34, 37, 39, (12 points)

Plane 3: -- 1, 2, 4, 7, 8, 9, 10, 11, 13, 1,i, 15, 16, 17, 18, 19, 20, 21,

22, 24, 25, (20 poinits)

According to the built-in subspaces, one subspace should have contained the

last 25 points, i.e., points 21-45 and the'other subspace should have Con-

tained the first 25 points. Plane 1 given above did pick up 23 of the

last 25 points and an extra point number 12. Likewise, plane 3 picked up

20 of the first 25 points. Plane 2 picked up 6 of the points belonging to

plane 1 and 6 of the points belonging to plane 3. Thus plane 2 is somewhat

of a mixture of the planes 1 and 3.

The results of the CLUSTR program were then displayed using the

ELLIPSE program. Notice especially the following displays in which the

2-dimensional planes were formed by relecting a suggested vector (-0.306,

-0.259, -0.316, 0.860) and an observable variable. The vector under con-

sideration is the vector 3, which transformed the original data points into

simple structure plane 3.
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(a) Variable 1 against vector 3--After normalizing, the vectoi reduced to

(0.0, -0.272, -0.332, 0.903). Plane 3 was superimposed. Points number

1.1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,.21,

"22, 23, 24, 25, 26 can be seen to be lying ou the simple structurc planc.
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IO

(b) Variable 2 against vector 3--After normalizing, the vector reduced to

P l~.. t 11 n V.-N-n-1 l "1fr~ , 1.. -ti "

1, 3, 5, 6. 7, 8, 9, 10, 11, 12, 13, 14,15, 16, 17, 18, 19, 20, 21., 22, 23,

24, 25, 26 can be seen lying on the simple structure plane.

Ii

I
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(c) Variable 3 against vector 3--After normalizing, the vector reduced to

(-0.322, -0.273, 0.0, 0.906). Plane 3 was superimposed. Points number

1-26 can be seen lying on the simple structure plane.

U

' AC
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IJ

II
i:

(d) Variable 4 against vector 3--The vector, after normalizing, reduced to

(-0.599), -0.507, -0.619, 0.0). Plane 3 was superimposed. Points number

-1-27 1ith th. exception of i-mber 5 can be seen lying un the 7ilple

structure plane.
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Th AhhVA A dimplays pertain to each of the 4 variables against

vector 3 and superimposition of simple structure plane 3. Vector 3 is the

vector which transforms--the raw data into simple structure plane 3. toin:e:

1-25 with the exception of 3, 5, 6, 12 and 23 lie on this plane. Vector 3

15 the normal to this simple structure plane 3. Hence any plane passing

through vector 3 is orthogonal to the simple structure plane 3. When pro-

jections onto this orthogonal plane are taken, the points lying on the

simple structure plane should fall within a narrow band (almost resembling

a straight line) and the above 4 displays clearly bring out this fact.

Variables 1, 2, 3, and 4 make 4 different planes, respectively, passing

through vector 3 and all orthogonal to the simple structure plane 3..

This can also be thought of as rotating a plane passing through vector

3 around the vector 3. Projections are taken when this rotating plane

passes through the axis corresponding to each of the variables. Attention

should also be drawn to these displays.

I
-k '1
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(e) Variable 1 against vector 3--The vector, after normalizing, reduced

to (0.0, -0.272, -0.332, 0.903). Simple structure plane 1 was superimposed.

Since the plAne passing through vector 3 and the axis corresponding to

"-variable 1 is not orthogonal to simple structure plane 1, we do not see

points lying on a narrow band resembling' a straight line in this display.
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(f) Variable 2 against variable 1--Plane 3 was superimposed. Once again,

for the reasons mentioned in (e) above, we do not see a good simple

from the proper position.

Vi
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t (g) Variable 4 against vector 1--The vector, after normalizing, reduced

to (-0.325, -0.289, 0.900, 0.0). Plane 1 was supoeimposed. Since any

plane passing through vector I is orthogonal to simple structure plane 1,

O. tn RA. P Snnd Aimple Atnire in this (TlspIA % A rk.

Points number 21, 22, 23, 25, 26, 28, 30p 31, 32, 33, 34, 35, 37, 38, 39,

40, 41, 42, 43, 44, 45, lie within a narrow band resembling a straight

line.
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The user should find the other displays easy to understand. A

good simple structure is seen only when a plane is selected which passes

through a vector that tkr.nsforms the raw data into a simple structure

solution, and the corresponding simple structure plane is superimposed.

It should, however, be noted that the clustering of'points is not affected

by this principle and hence, in all displays, the clusters can be easily

identified.
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